Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biochem Biophys Res Commun ; 684: 149145, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37913587

RESUMO

Mechanical stimuli serve as crucial regulators of bone mass, promoting bone formation. However, the molecular mechanisms governing how mesenchymal stem cells (MSCs) respond to mechanical cues during their differentiation into osteogenic cells remain elusive. In this study, we found that cyclic stretching enhances MSC proliferation but does not increase the expression of osteoblast-related genes. We further revealed that this proliferative effect is mediated by fibroblast growth factor 2 (FGF-2), synthesized by MSCs in response to mechanical stress. Cell proliferation induced by cyclic stretching was inhibited upon the addition of either U0126, an inhibitor of mitogen-activated protein kinase kinase (MEK), or early growth response 1 (EGR1)-targeting small-hairpin RNA (shRNA), indicating the involvement of the extracellular signal-regulated kinase (ERK)/EGR1 signaling pathway. Osteoblast differentiation, evaluated through ALP activity, osteoblast-related gene expression, and mineralization, was stimulated by recombinant human FGF-2 (rhFGF-2) when applied during the proliferation phase, but not when applied during the differentiation stage alone. Our results suggest that FGF-2 indirectly promotes osteoblast differentiation as a downstream effect of stimulating cell proliferation. For the first time, we demonstrate that cyclic stretching induces MSCs to produce FGF-2, which in turn encourages cell proliferation through an autocrine/paracrine mechanism, consequently leading to osteoblast differentiation.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Estresse Mecânico , Diferenciação Celular , Proliferação de Células , Osteoblastos/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762102

RESUMO

The development of next-generation sequencing (NGS) has dramatically increased the speed and volume of genetic analysis. Furthermore, the range of applications of NGS is rapidly expanding to include genome, epigenome (such as DNA methylation), metagenome, and transcriptome analyses (such as RNA sequencing and single-cell RNA sequencing). NGS enables genetic research by offering various sequencing methods as well as combinations of methods. Bone tissue is the most important unit supporting the body and is a reservoir of calcium and phosphate ions, which are important for physical activity. Many genetic diseases affect bone tissues, possibly because metabolic mechanisms in bone tissue are complex. For instance, the presence of specialized immune cells called osteoclasts in the bone tissue, which absorb bone tissue and interact with osteoblasts in complex ways to support normal vital functions. Moreover, the many cell types in bones exhibit cell-specific proteins for their respective activities. Mutations in the genes encoding these proteins cause a variety of genetic disorders. The relationship between age-related bone tissue fragility (also called frailty) and genetic factors has recently attracted attention. Herein, we discuss the use of genomic, epigenomic, transcriptomic, and metagenomic analyses in bone genetic disorders.


Assuntos
Doenças Ósseas , Osso e Ossos , Humanos , Doenças Ósseas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Osteoblastos , Osteoclastos
3.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629084

RESUMO

The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.


Assuntos
Síndrome do Nevo Basocelular , Doenças Ósseas , Humanos , Proteínas Hedgehog/genética , Mutação , Osso e Ossos , Carcinogênese
4.
Dent Mater J ; 42(5): 633-640, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37423721

RESUMO

Titanium is a biocompatible material commonly used for dental treatments. However, the detailed mechanism underlying the weak biological activity of titanium has not been elucidated. We investigated both the inflammatory responses and T cell activation induced by solid titanium in the gingiva in mice. Both titanium and nickel wire implantation promoted neutrophil infiltration into the gingiva on day 2. Nickel, but not titanium, wire implantation enhanced proinflammatory cytokine expression and dendritic cell activity in gingival tissue by day 2. Nickel wire implantation enhanced the activity of T cells in draining lymph nodes on day 5. Moreover, T cell and neutrophil infiltration and elevated proinflammatory cytokine expression in the gingival tissue were still observed on day 5. However, no such augmented biological responses were observed after titanium wire implantation. These findings suggest that, unlike nickel, solid titanium does not induce sufficient inflammatory responses leading to T cell activation in gingival tissue.


Assuntos
Níquel , Titânio , Camundongos , Animais , Gengiva , Materiais Biocompatíveis , Teste de Materiais
5.
Bull Tokyo Dent Coll ; 64(2): 43-54, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37183012

RESUMO

This study aimed to assess the combined application of two biomaterials, a selfassembling peptide hydrogel (SPH) and an atelocollagen sponge (ACS). The ACS was combined with SPH (PuraMatrixⓇ or PanaceaGelⓇ) and its osteogenic effects on mouse osteoblastic cell line MC3T3 then evaluated. Each type of SPH was successfully incorporated into the ACS. The MC3T3 cells showed uniform distribution within the scaffold. No necrotic cells were observed throughout the experimental procedures. When the SPH was combined with the ACS, the MC3T3 cells differentiated toward the osteo-lineage, expressing Alp, Runx2, Osx, Bsp, and Oc. PanaceaGelⓇ exhibited a stronger osteogenic effect on the cells than PuraMatrixⓇ.


Assuntos
Colágeno , Hidrogéis , Camundongos , Animais , Peptídeos/farmacologia , Diferenciação Celular , Osteogênese , Osteoblastos
6.
Med Mol Morphol ; 56(3): 159-176, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37012505

RESUMO

The purpose of this study was to investigate whether fibroblast growth factor 4 (FGF4) and FGF9 are active in dentin differentiation. Dentin matrix protein 1 (Dmp1) -2A-Cre transgenic mice, which express the Cre-recombinase in Dmp1-expressing cells, were crossed with CAG-tdTomato mice as reporter mouse. The cell proliferation and tdTomato expressions were observed. The mesenchymal cell separated from neonatal molar tooth germ were cultured with or without FGF4, FGF9, and with or without their inhibitors ferulic acid and infigratinib (BGJ398) for 21 days. Their phenotypes were evaluated by cell count, flow cytometry, and real-time PCR. Immunohistochemistry for FGFR1, 2, and 3 expression and the expression of DMP1 were performed. FGF4 treatment of mesenchymal cells obtained promoted the expression of all odontoblast markers. FGF9 failed to enhance dentin sialophosphoprotein (Dspp) expression levels. Runt-related transcription factor 2 (Runx2) was upregulated until day 14 but was downregulated on day 21. Compared to Dmp1-negative cells, Dmp1-positive cells expressed higher levels of all odontoblast markers, except for Runx2. Simultaneous treatment with FGF4 and FGF9 had a synergistic effect on odontoblast differentiation, suggesting that they may play a role in odontoblast maturation.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Fator 4 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos , Odontoblastos , Animais , Camundongos , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fator 4 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/metabolismo , Camundongos Transgênicos , Odontoblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo
7.
Biomed Res ; 44(1): 9-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36682799

RESUMO

Interleukin-33 (IL-33) is a member of the IL-1 cytokine family that has been studied primarily in the context of type 2 immune responses. Recent reports suggest that IL-33 also enhances the func- tions of various immune cells and contributes to the development of different inflammatory diseas- es. Interestingly, IL-33 and its receptor ST2 axis exerted either inhibitory or promotional effects on alveolar bone loss in various periodontitis models. Using a mouse model of ligature-induced periodontitis, we found that the levels of mRNAs encoding IL-33 and other inflammatory cyto- kines (IL-1α, IL-1ß, IL-6, and TNFα) were augmented in gingival tissues of wild-type (WT) mice, and that the alveolar bone loss amount was lower in IL-33-deficient than WT mice. The numbers and proportions of IFN-γ-producing CD8+ T and regulatory T cells were decreased while those of Th17 cells were increased in the draining lymph nodes of IL-33-deficient mice compared to WT mice. Additionally, the level of RNA encoding an osteoclastogenic molecule, i.e., receptor activa- tor of nuclear factor kappa-B ligand (RANKL), in ligated gingival tissue was higher in IL-33-defi- cient than WT mice. These results suggest that IL-33 is involved in alveolar bone loss in the ligature-induced periodontitis model, although IL-33 may inhibit osteoclast differentiation.


Assuntos
Perda do Osso Alveolar , Periodontite , Camundongos , Animais , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Interleucina-33/genética , Periodontite/patologia , Citocinas , Osteogênese , Ligante RANK/genética , Ligante RANK/farmacologia
8.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232677

RESUMO

Hajdu-Cheney syndrome (HCS) is a rare autosomal dominant manifestation of a congenital genetic disorder caused by a mutation in the NOTCH2 gene. NOTCH signaling has variations from NOTCH 1 to 4 and maintains homeostasis by determining and regulating the proliferation and differentiation of various cells. In HCS, the over-accumulated NOTCH2 causes abnormal bone resorption due to its continuous excessive signaling. HCS is characterized by progressive bone destruction, has complex wide-range clinical manifestations, and significantly impacts the patient's quality of life. However, no effective treatment has been established for HCS to date. There are genetic variants of NOTCH2 that have been reported in the ClinVar database of the U.S. National Institutes of Health. In total, 26 mutant variants were detected based on the American College of Medical Genetics and Genomics (ACMC). To date, there has been no comprehensive compilation of HCS mutations. In this review, we provide the most comprehensive list possible of HCS variants, nucleotide changes, amino acid definitions, and molecular consequences reported to date, following the ACMC guidelines.


Assuntos
Síndrome de Hajdu-Cheney , Aminoácidos/genética , Pesquisa em Genética , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Humanos , Mutação , Nucleotídeos , Qualidade de Vida
9.
Cell Rep ; 40(10): 111315, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070691

RESUMO

The transcriptional regulator Runx2 (runt-related transcription factor 2) has essential but distinct roles in osteoblasts and chondrocytes in skeletal development. However, Runx2-mediated regulatory mechanisms underlying the distinctive programming of osteoblasts and chondrocytes are not well understood. Here, we perform an integrative analysis to investigate Runx2-DNA binding and chromatin accessibility ex vivo using neonatal osteoblasts and chondrocytes. We find that Runx2 engages with cell-type-distinct chromatin-accessible regions, potentially interacting with different combinations of transcriptional regulators, forming cell-type-specific hotspots, and potentiating chromatin accessibility. Genetic analysis and direct cellular reprogramming studies suggest that Runx2 is essential for establishment of chromatin accessibility in osteoblasts. Functional enhancer studies identify an Sp7 distal enhancer driven by Runx2-dependent binding and osteoblast-specific chromatin accessibility, contributing to normal osteoblast differentiation. Our findings provide a framework for understanding the regulatory landscape encompassing Runx2-mediated and cell-type-distinct enhancer networks that underlie the specification of osteoblasts.


Assuntos
Cromatina , Subunidade alfa 1 de Fator de Ligação ao Core , Osteoblastos , Animais , Diferenciação Celular/fisiologia , Cromatina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteogênese
10.
Med Mol Morphol ; 55(3): 199-209, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35578118

RESUMO

We investigated whether BMP4, FGF8, and/or WNT3a on neural crest-like cells (NCLC) derived from mouse induced pluripotent stem (miPS) cells will promote differentiation of odontoblasts-like cells. After the miPS cells matured into embryonic body (EB) cells, they were cultured in a neural induction medium to produce NCLC. As the differentiation of NCLC were confirmed by RT-qPCR, they were then disassociated and cultured with a medium containing, BMP4, FGF8, and/or WNT3a for 7 and 14 days. The effect of these stimuli on NCLC were assessed by RT-qPCR, ALP staining, and immunocytochemistry. The cultured EB cells presented a significant increase of Snai1, Slug, and Sox 10 substantiating the differentiation of NCLC. NCLC stimulated with more than two stimuli significantly increased the odontoblast markers Dmp-1, Dspp, Nestin, Alp, and Runx2 expression compared to control with no stimulus. The expression of Dmp-1 and Dspp upregulated more when FGF8 was combined with WNT3a. ALP staining was positive in groups containing BMP4 and fluorescence was observed in immunocytochemistry of the common significant groups between Dmp-1 and Dspp. After stimulation, the cell morphology demonstrated a spindle-shaped cells with long projections resembling odontoblasts. Simultaneous BMP4, FGF8, and WNT3a stimuli significantly differentiated NCLC into odontoblast-like cells.


Assuntos
Proteína Morfogenética Óssea 4 , Fator 8 de Crescimento de Fibroblasto , Células-Tronco Pluripotentes Induzidas , Odontoblastos , Animais , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular , Células Cultivadas , Fator 8 de Crescimento de Fibroblasto/farmacologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Crista Neural , Odontoblastos/metabolismo , Proteína Wnt3A/farmacologia
11.
Bull Tokyo Dent Coll ; 63(2): 75-83, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35613864

RESUMO

Serum serves as a source of rich nutrients during in vitro cell culture, facilitating cell adhesion, growth, and differentiation. When culturing stem cells for transplantation, however, it must be remembered that such culture medium may contain substances potentially harmful to the proposed recipient and may even induce cellular damage. The purpose of this study was to determine whether KnockOut Serum Replacement (KSR), a chemically defined medium supplement, enhanced in vitro differentiation of induced pluripotent stem cells into odontoblasts. Cranial neural crest cells, precursors of odontoblasts, were generated from mouse-induced pluripotent stem cells. They were then cultured in serum-free Dulbecco's modified Eagle's/F12 medium containing fibroblast growth factor 8 with or without KSR. The cells cultured with KSR showed strong proliferation, acquired a spindle-like morphology, and connected with the surrounding cells. KnockOut Serum Replacement also boosted expression of odontoblast markers as measured by qRT-PCR, and increased dentin sialoprotein as assessed by immunostaining. These results confirmed that mouse-induced pluripotent stem cells differentiated into odontoblasts under serum-free conditions, and that KSR enhanced the efficiency of this process.


Assuntos
Células-Tronco Pluripotentes Induzidas , Odontoblastos , Animais , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos
12.
Med Mol Morphol ; 55(3): 174-186, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461467

RESUMO

Cleidocranial dysplasia (CCD) is a hereditary disorder associated with skeletal dysplasia and dental abnormalities. CCD arises from heterozygous loss of function mutations in the Runt-related transcription factor 2 (RUNX2) gene. Osteoporosis is often observed in CCD patients and conventional vitamin D supplementation is recommended. However, sufficient evidences have not been presented yet. This study investigated the role of RUNX2 in osteoblastic differentiation and sought to identify potential target genes for the treatment of osteoporosis associated with CCD, using induced pluripotent stem cell (iPSC) technology. We successfully established Runx2-/-, Runx2+/- and wild-type miPSCs from litter-matched mice and found poor Vdr expression in Runx2-/-cells. Significant down-regulation of osteoblastic differentiation in Runx2-/- miPSCs was observed. Gene expression array revealed unexpected results such as remarkable increase of Rankl expression and decrease of Vdr in Runx2-/- cells. Insufficient response to vitamin D in Runx2-/- cells was also observed. Our results suggest that RUNX2 functions as a regulator of Rankl and Vdr and thereby controls bone density. These findings also suggest that conventional vitamin D supplementation may not be as effective as previously expected, in the treatment of osteoporosis associated with CCD, and that inhibiting RANKL function might be worth considering as an alternative treatment strategy.


Assuntos
Displasia Cleidocraniana , Subunidade alfa 1 de Fator de Ligação ao Core , Células-Tronco Pluripotentes Induzidas , Osteoporose , Vitamina D , Animais , Diferenciação Celular , Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/genética , Vitamina D/farmacologia
13.
J Appl Oral Sci ; 30: e20210491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35195151

RESUMO

OBJECTIVE: Stem cell-based regeneration therapy offers new therapeutic options for patients with bone defects because of significant advances in stem cell research. Although bone marrow mesenchymal stem cells are the ideal material for bone regeneration therapy using stem cell, they are difficult to obtain. Induced pluripotent stem cells (iPSCs) are now considered an attractive tool in bone tissue engineering. Recently, the efficiency of establishing iPSCs has been improved by the use of the Sendai virus vector, and it has become easier to establish iPSCs from several type of somatic cells. In our previous study, we reported a method to purify osteogenic cells from iPSCs.This study aimed to evaluate the osteogenic ability of iPSCs derived from peripheral blood cells. METHODOLOGY: Mononuclear cells (MNCs) were obtained from human peripheral blood. Subsequently, T cells were selectively obtained from these MNCs and iPSCs were established using Sendai virus vectors. Established iPSCs were evaluated by the expression of undifferentiated markers and teratoma formation assays. Osteoblasts were induced from these iPSCs and evaluated by the expression of osteoblast markers. Additionally, the induced osteoblasts were transplanted into rat critical size calvaria bone defect models with collagen sponge scaffolds. Samples were evaluated by radiographical and histological assessments. RESULTS: Induced osteoblasts expressed several osteoblast-specific markers. The results of radiographical and histological assessments revealed that the cell transplant group had bone formations superior to those of the control group. CONCLUSIONS: This study suggests that peripheral blood MNCs have the potential to differentiate into osteoblasts. Although there are some hurdles in iPSC transplantation, osteoblasts obtained from MNC-iPSCs could be applied to bone regeneration therapy in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Células Sanguíneas , Regeneração Óssea , Diferenciação Celular , Colágeno , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Ratos
14.
Med Mol Morphol ; 55(1): 8-19, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34739612

RESUMO

Fibroblast growth factor 8 (FGF8) is known to be a potent stimulator of canonical Wnt/ß-catenin activity, an essential factor for tooth development. In this study, we analyzed the effects of co-administration of FGF8 and a CHIR99021 (GSK3ß inhibitor) on differentiation of dental mesenchymal cells into odontoblasts. Utilizing Cre-mediated EGFP reporter mice, dentin matrix protein 1 (Dmp1) expression was examined in mouse neonatal molar tooth germs. At birth, expression of Dmp1-EGFP was not found in mesenchymal cells but rather epithelial cells, after which Dmp1-positive cells gradually emerged in the mesenchymal area along with disappearance in the epithelial area. Primary cultured mesenchymal cells from neonatal tooth germ specimens showed loss of Dmp1-EGFP positive signals, whereas addition of Wnt3a or the CHIR99021 significantly regained Dmp1 positivity within approximately 2 weeks. Other odontoblast markers such as dentin sialophosphoprotein (Dspp) could not be clearly detected. Concurrent stimulation of primary cultured mesenchymal cells with the CHIR99021 and FGF8 resulted in significant upregulation of odonto/osteoblast proteins. Furthermore, increased expression levels of runt-related transcription factor 2 (Runx2), osterix, and osteocalcin were also observed. The present findings indicate that coordinated action of canonical Wnt/ß-catenin and FGF8 signals is essential for odontoblast differentiation of tooth germs in mice.


Assuntos
Células-Tronco Mesenquimais , Odontoblastos , Animais , Diferenciação Celular , Fator 8 de Crescimento de Fibroblasto/metabolismo , Camundongos , Odontoblastos/metabolismo , Osteoblastos
15.
J. appl. oral sci ; 30: e20210491, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360530

RESUMO

Abstract Stem cell-based regeneration therapy offers new therapeutic options for patients with bone defects because of significant advances in stem cell research. Although bone marrow mesenchymal stem cells are the ideal material for bone regeneration therapy using stem cell, they are difficult to obtain. Induced pluripotent stem cells (iPSCs) are now considered an attractive tool in bone tissue engineering. Recently, the efficiency of establishing iPSCs has been improved by the use of the Sendai virus vector, and it has become easier to establish iPSCs from several type of somatic cells. In our previous study, we reported a method to purify osteogenic cells from iPSCs. Objective: This study aimed to evaluate the osteogenic ability of iPSCs derived from peripheral blood cells. Methodology: Mononuclear cells (MNCs) were obtained from human peripheral blood. Subsequently, T cells were selectively obtained from these MNCs and iPSCs were established using Sendai virus vectors. Established iPSCs were evaluated by the expression of undifferentiated markers and teratoma formation assays. Osteoblasts were induced from these iPSCs and evaluated by the expression of osteoblast markers. Additionally, the induced osteoblasts were transplanted into rat critical size calvaria bone defect models with collagen sponge scaffolds. Samples were evaluated by radiographical and histological assessments. Results: Induced osteoblasts expressed several osteoblast-specific markers. The results of radiographical and histological assessments revealed that the cell transplant group had bone formations superior to those of the control group. Conclusions: This study suggests that peripheral blood MNCs have the potential to differentiate into osteoblasts. Although there are some hurdles in iPSC transplantation, osteoblasts obtained from MNC-iPSCs could be applied to bone regeneration therapy in the future.

16.
Orphanet J Rare Dis ; 16(1): 443, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674729

RESUMO

BACKGROUND: Basal cell carcinoma (BCC) is the most commonly occurring neoplasm in patients with Gorlin syndrome. It is widely accepted that multiple basal cell carcinomas simultaneously develop in middle-aged patients with this syndrome. However, the presence of driver genes other than the PTCH1 in Gorlin syndrome has not been explored. This study aimed to identify common gene mutations other than PTCH1 in simultaneously occurring basal cell carcinomas in patients with Gorlin syndrome via exome sequencing analysis. METHODS: Next-generation sequencing analysis was performed using four basal cell carcinoma samples, one dental keratinocyte sample, and two epidermoid cyst samples, which were surgically resected from one patient with Gorlin syndrome on the same day. RESULTS: Overall, 282 somatic mutations were identified in the neoplasms. No additional somatic mutations in PTCH1, PTCH2, TP53, and SMO were identified. However, enrichment analysis showed that multiple genes, such as IFT172 and KIFAP3, could regulate ciliary functions important for Hedgehog signaling. CONCLUSION: The development of BCCs in patients with Gorlin syndrome may be triggered by mutations that cause substantial dysfunction of cilia.


Assuntos
Síndrome do Nevo Basocelular , Carcinoma Basocelular , Neoplasias Cutâneas , Proteínas Adaptadoras de Transdução de Sinal , Síndrome do Nevo Basocelular/genética , Carcinoma Basocelular/genética , Proteínas do Citoesqueleto , Proteínas Hedgehog/metabolismo , Humanos , Pessoa de Meia-Idade , Receptor Patched-1/genética , Neoplasias Cutâneas/genética
17.
Anticancer Res ; 41(10): 4979-4984, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34593445

RESUMO

BACKGROUND/AIM: Proteomics is an approach that can detect differentially expressed proteins between cancerous and non-cancerous tissue samples. Previously, we found that vinculin was predominantly expressed in pancreatic cancerous tissues compared to adjacent non-cancerous tissues by performing proteomic differential display analysis. However, the clinicopathological significance of vinculin in pancreatic cancer has not yet been documented. MATERIALS AND METHODS: The GEPIA2 and the Human Protein Atlas databases were used to analyze vinculin expression levels in cancerous tissue samples and investigate whether its expression level is clinically associated with patient survival. RESULTS: Vinculin mRNA expression levels were solely increased in pancreatic cancer tissues, and increased expression was inversely related to patient survival. Higher levels of vinculin protein were found in pancreatic cancer tissues. In contrast, faint staining of vinculin was observed throughout the normal pancreatic tissues. CONCLUSION: Vinculin may be an unfavorable prognostic indicator for patients with pancreatic cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Neoplasias Pancreáticas/mortalidade , Vinculina/metabolismo , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Taxa de Sobrevida , Vinculina/genética
18.
Front Physiol ; 12: 704518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504437

RESUMO

Odontoblasts play critical roles in dentin formation and sensory transduction following stimuli on the dentin surface. Exogenous stimuli to the dentin surface elicit dentinal sensitivity through the movement of fluids in dentinal tubules, resulting in cellular deformation. Recently, Piezo1 channels have been implicated in mechanosensitive processes, as well as Ca2+ signals in odontoblasts. However, in human odontoblasts, the cellular responses induced by mechanical stimulation, Piezo1 channel expression, and its pharmacological properties remain unclear. In the present study, we examined functional expression of the Piezo1 channel by recording direct mechanical stimulation-induced Ca2+ signaling in dentin matrix protein 1 (DMP-1)-, nestin-, and dentin sialophosphoprotein (DSPP)-immunopositive human odontoblasts. Mechanical stimulation of human odontoblasts transiently increased intracellular free calcium concentration ([Ca2+]i). Application of repeated mechanical stimulation to human odontoblasts resulted in repeated transient [Ca2+]i increases, but did not show any desensitizing effects on [Ca2+]i increases. We also observed a transient [Ca2+]i increase in the neighboring odontoblasts to the stimulated cells during mechanical stimulation, showing a decrease in [Ca2+]i with an increasing distance from the mechanically stimulated cells. Application of Yoda1 transiently increased [Ca2+]i. This increase was inhibited by application of Gd3+ and Dooku1, respectively. Mechanical stimulation-induced [Ca2+]i increase was also inhibited by application of Gd3+ or Dooku1. When Piezo1 channels in human odontoblasts were knocked down by gene silencing with short hairpin RNA (shRNA), mechanical stimulation-induced [Ca2+]i responses were almost completely abolished. Piezo1 channel knockdown attenuated the number of Piezo1-immunopositive cells in the immunofluorescence analysis, while no effects were observed in Piezo2-immunopositive cells. Alizarin red staining distinctly showed that pharmacological activation of Piezo1 channels by Yoda1 significantly suppressed mineralization, and shRNA-mediated knockdown of Piezo1 also significantly enhanced mineralization. These results suggest that mechanical stimulation predominantly activates intracellular Ca2+ signaling via Piezo1 channel opening, rather than Piezo2 channels, and the Ca2+ signal establishes intercellular odontoblast-odontoblast communication. In addition, Piezo1 channel activation participates in the reduction of dentinogenesis. Thus, the intracellular Ca2+ signaling pathway mediated by Piezo1 channels could contribute to cellular function in human odontoblasts in two ways: (1) generating dentinal sensitivity and (2) suppressing physiological/reactional dentinogenesis, following cellular deformation induced by hydrodynamic forces inside dentinal tubules.

19.
Med Mol Morphol ; 54(2): 69-78, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32816116

RESUMO

Gorlin syndrome (GS) is an autosomal dominant genetic disorder involving Patched 1 (PTCH1) mutations. The PTCH1 is a receptor as well as an inhibitor of hedgehog (Hh) to sequester downstream Hh pathway molecules called Smoothened (SMO). PTCH1 mutations causes a variety of GS conditions including falx calcification, odontogenic keratocytes and basal cell carcinomas (BCC). Because PTCH1 is a major driver gene of sporadic BCC, GS patients are characteristically prone to BCC. In order to elucidate the pathological mechanism of BCC-prone GS patients, we investigated keratinocytes derived from GS patient specific iPS cells (G-OFiPSCs) which were generated and reported previously. We found that keratinocytes derived from G-OFiPSCs (GKCs) have increased expression of Hh target molecules. GKCs were irradiated and those cells showed high resistance to UV induced apoptosis. BCL2, known as anti-apoptotic molecule as well as Hh target, significantly increased in GKCs. Several molecules involved in DNA repair, cell cycle control, senescence, and genotoxic stress such as TP53, BRCA1 and GADD45A increased only in GKCs. GKCs are indicated to be resistant to UV irradiation by upregulating molecules which control DNA repair and genotoxic even under DNA damage caused by UV. The anti-apoptotic properties of GKCs may contribute BCC.


Assuntos
Síndrome do Nevo Basocelular/metabolismo , Ciclo Celular , Reparo do DNA , Queratinócitos/metabolismo , Receptor Patched-1/genética , Raios Ultravioleta , Apoptose , Povo Asiático , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Síndrome do Nevo Basocelular/genética , Síndrome do Nevo Basocelular/fisiopatologia , Carcinoma Basocelular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Mutação , Transdução de Sinais , Receptor Smoothened/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066274

RESUMO

Gorlin syndrome is a skeletal disorder caused by a gain of function mutation in Hedgehog (Hh) signaling. The Hh family comprises of many signaling mediators, which, through complex mechanisms, play several important roles in various stages of development. The Hh information pathway is essential for bone tissue development. It is also the major driver gene in the development of basal cell carcinoma and medulloblastoma. In this review, we first present the recent advances in Gorlin syndrome research, in particular, the signaling mediators of the Hh pathway and their functions at the genetic level. Then, we discuss the phenotypes of mutant mice and Hh signaling-related molecules in humans revealed by studies using induced pluripotent stem cells.


Assuntos
Síndrome do Nevo Basocelular/genética , Testes Genéticos/métodos , Animais , Síndrome do Nevo Basocelular/diagnóstico , Síndrome do Nevo Basocelular/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Instabilidade Genômica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Receptores Patched/genética , Receptores Patched/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA